
1/8

Les design patterns en C++14
But : proposer une implémentation en C++ “moderne” (ou expliquer
pourquoi un design pattern n'est plus pertinent en C++ “moderne”). ie
m e t t r e a j o u r l ' a r t i c l e d e D a v i d e C o m e :
http:/ /come-david.developpez.com/tutoriels/dps/

Dans un premier temps, principalement les design patterns du GoF.

Sources :

http://en.wikipedia.org/wiki/Software_design_pattern●

https://sourcemaking.com/design_patterns●

http://www.dofactory.com/net/design-patterns●

http://www.oodesign.com/●

http://en.wikibooks.org/wiki/C%2B%2B_Programming/Code/Desig●

n_Patterns
http://www.bogotobogo.com/DesignPatterns/introduction.php●

http://openclassrooms.com/courses/programmez-en-oriente-obje●

t-en-php/les-design-patterns
http://openclassrooms.com/courses/programmation-objet-avance●

e-la-conception-avant-tout-design-patterns-a-l-emploi
https://www.ics.com/designpatterns/book/index.html●

… il y a tellement de sources qui parlent de cela…●

Creational patterns

Abstract factory
Provide an interface for creating families of related or dependent objects
without specifying their concrete classes.

http://come-david.developpez.com/tutoriels/dps/
http://en.wikipedia.org/wiki/Software_design_pattern
https://sourcemaking.com/design_patterns
http://www.dofactory.com/net/design-patterns
http://www.oodesign.com/
http://en.wikibooks.org/wiki/C++_Programming/Code/Design_Patterns
http://en.wikibooks.org/wiki/C++_Programming/Code/Design_Patterns
http://www.bogotobogo.com/DesignPatterns/introduction.php
http://openclassrooms.com/courses/programmez-en-oriente-objet-en-php/les-design-patterns
http://openclassrooms.com/courses/programmez-en-oriente-objet-en-php/les-design-patterns
http://openclassrooms.com/courses/programmation-objet-avancee-la-conception-avant-tout-design-patterns-a-l-emploi
http://openclassrooms.com/courses/programmation-objet-avancee-la-conception-avant-tout-design-patterns-a-l-emploi
https://www.ics.com/designpatterns/book/index.html

Création d'applications en C++ moderne par la pratique

Builder
Separate the construction of a complex object from its representation,
allowing the same construction process to create various representations.

Factory method
Define an interface for creating a single object, but let subclasses decide
which class to instantiate. Factory Method lets a class defer instantiation
to subclasses (dependency injection[15]).

Lazy initialization
Tactic of delaying the creation of an object, the calculation of a value, or
some other expensive process until the first time it is needed. This
pattern appears in the GoF catalog as “virtual proxy”, an implementation
strategy for the Proxy pattern.

Multiton
Ensure a class has only named instances, and provide global point of
access to them.

Object pool
Avoid expensive acquisition and release of resources by recycling objects
that are no longer in use. Can be considered a generalisation of
connection pool and thread pool patterns.

3/8

Prototype
Specify the kinds of objects to create using a prototypical instance, and
create new objects by copying this prototype.

Resource acquisition is initialization
Ensure that resources are properly released by tying them to the lifespan
of suitable objects.

Singleton
Ensure a class has only one instance, and provide a global point of access
to it.

Structural patterns

Adapter
Or Wrapper or Translator.

Convert the interface of a class into another interface clients expect. An
adapter lets classes work together that could not otherwise because of
incompatible interfaces. The enterprise integration pattern equivalent is
the translator.

Création d'applications en C++ moderne par la pratique

Bridge
Decouple an abstraction from its implementation allowing the two to vary
independently.

Composite
Compose objects into tree structures to represent part-whole hierarchies.
Composite lets clients treat individual objects and compositions of
objects uniformly.

Decorator
Attach additional responsibilities to an object dynamically keeping the
same interface. Decorators provide a flexible alternative to subclassing
for extending functionality.

Facade
Provide a unified interface to a set of interfaces in a subsystem. Facade
defines a higher-level interface that makes the subsystem easier to use.

Flyweight
Use sharing to support large numbers of similar objects efficiently.

Front Controller
The pattern relates to the design of Web applications. It provides a

5/8

centralized entry point for handling requests.

Module
Group several related elements, such as classes, singletons, methods,
globally used, into a single conceptual entity.

Proxy
Provide a surrogate or placeholder for another object to control access to
it.

Twin
Twin allows modeling of multiple inheritance in programming languages
that do not support this feature.

Behavioral patterns

Blackboard
Generalized observer, which allows multiple readers and writers.
Communicates information system-wide.

Chain of responsibility
Avoid coupling the sender of a request to its receiver by giving more than
one object a chance to handle the request. Chain the receiving objects

Création d'applications en C++ moderne par la pratique

and pass the request along the chain until an object handles it.

Command
Encapsulate a request as an object, thereby letting you parameterize
clients with different requests, queue or log requests, and support
undoable operations.

Interpreter
Given a language, define a representation for its grammar along with an
interpreter that uses the representation to interpret sentences in the
language.

Iterator
Provide a way to access the elements of an aggregate object sequentially
without exposing its underlying representation.

Mediator
Define an object that encapsulates how a set of objects interact. Mediator
promotes loose coupling by keeping objects from referring to each other
explicitly, and it lets you vary their interaction independently.

Memento
Without violating encapsulation, capture and externalize an object's
internal state allowing the object to be restored to this state later.

7/8

Null object
Avoid null references by providing a default object.

Observer
Or Publish/subscribe

Define a one-to-many dependency between objects where a state change
in one object results in all its dependents being notified and updated
automatically.

Servant
Define common functionality for a group of classes

Specification
Recombinable business logic in a Boolean fashion

State
Allow an object to alter its behavior when its internal state changes. The
object will appear to change its class.

Création d'applications en C++ moderne par la pratique

Strategy
Define a family of algorithms, encapsulate each one, and make them
interchangeable. Strategy lets the algorithm vary independently from
clients that use it.

Template method
Define the skeleton of an algorithm in an operation, deferring some steps
to subclasses. Template method lets subclasses redefine certain steps of
an algorithm without changing the algorithm's structure.

Visitor
Represent an operation to be performed on the elements of an object
structure. Visitor lets you define a new operation without changing the
classes of the elements on which it operates.

Concurrency patterns

(plus tard)

	Les design patterns en C++14
	Creational patterns
	Abstract factory
	Builder
	Factory method
	Lazy initialization
	Multiton
	Object pool
	Prototype
	Resource acquisition is initialization
	Singleton

	Structural patterns
	Adapter
	Bridge
	Composite
	Decorator
	Facade
	Flyweight
	Front Controller
	Module
	Proxy
	Twin

	Behavioral patterns
	Blackboard
	Chain of responsibility
	Command
	Interpreter
	Iterator
	Mediator
	Memento
	Null object
	Observer
	Servant
	Specification
	State
	Strategy
	Template method
	Visitor

	Concurrency patterns

